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Introduction 
Cassini – Huygens is a joint NASA, ESA and ASI project to, “explore the Saturnian 

system and all its elements: the planet and its atmosphere, rings and magnetosphere, and 

a large number of its moons, particularly Titan and the icy satellites” (European Space 

Agency).  The Cassini Orbiter is the main spacecraft.  The Huygens Probe, carried by 

Cassini to Saturn, was designed to detach and land on Saturn’s moon Titan, to investigate 

the atmosphere and surface. 

 

The Cassini-Huygens spacecraft was launched aboard a U.S. Titan IV-B launch vehicle. 

This is the largest and most powerful expendable launch vehicle used by NASA.  Even 

using the Titan IV-B, it was not possible to for Cassini - Huygens to be sent on a 

conventional interplanetary trajectory to Saturn.  NASA was forced to fly a circuitous 

route that included flybys of Venus (twice), Earth and Jupiter.  This seems like an 

extremely complicated path; however, the route included what are called gravity-assist 

maneuvers at each flyby that were used to generate the large change in velocity that was 

required.  In this paper I will explain why a conventional trajectory from Earth to Saturn 

was excluded, and how the gravity assist maneuvers made the mission possible. 

Background 
There is actually surprisingly little physics required to understand the orbital mechanics 

of the Cassini – Huygens mission to an approximation that shows why the conventional 

trajectory was excluded and why gravity assist was required.  The following is a quick 

review of the most important concepts. 

Orbits 

According to Kepler, an orbit about the Sun is an ellipse with the Sun at one focus.  The 

orbits of the planets we will be considering have very small eccentricities and so can be 

approximated as being circular.  The Sun acts as a central force in the solar system; and 

so, according to Newton, F ma and, 
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Here G  is Newton’s gravitational constant, m is the mass of the orbiting body, m is the 

mass of the Sun, r is the radius of the orbit and v is the orbital velocity.  Equation (1) 

implies that there is a specific velocity at which each planet must be moving in its orbit 

given by, 
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http://en.wikipedia.org/wiki/Orbit
http://en.wikipedia.org/wiki/Ellipse
http://en.wikipedia.org/wiki/Focus_%28geometry%29


Energy 

The energy of a body in a heliocentric orbit is given by the sum of its kinetic energy and 

potential energy.  Recall that kinetic energy is given by, 
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In this expression, m is the mass of the body and v  is its velocity.  If the Sun is 

approximated as a point mass, the potential energy of a body in a solar orbit is given by, 
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Here G is the gravitational constant, m is the mass of the orbiting body, m is the mass of 

the Sun, and r is the radius of the orbit.  The total energy is defined as the sum of the 

kinetic and potential energies, therefore, 
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This expression can be rewritten in a form more suitable to orbital mechanics by 

factoring out the mass of the orbiting body, m . 
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C (sometimes writtenE) is therefore the total energy of the orbiting body per unit mass. 

Changing Orbits 

Moving between two orbits implies transferring from an initial orbit involving an initial 

energy at a given radius, to a final orbit and energy at a new radius.  From equation (6) it 

can be seen that the initial energy and final energies per unit mass are, 
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In equation (7), iC is the energy per unit mass of the initial orbit, iv  is the velocity of a 

body in the initial orbit, and ir  is the radius of the initial orbit.  In equation (8), fC is the 

energy per unit mass of the final orbit, fv is the velocity of a body in the final orbit, and fr  

is the radius of the final orbit.  In both equations,G is Newton’s gravitational constant 



and m is the mass of the Sun.  A change from an initial orbit to a final orbit therefore 

means that the total energy of the orbiting body must change by, 
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By combining equations (2), (7), (8) and (9), along with some algebra, it can be shown 

that,  
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Equation (10) represents the energy per unit mass required to change from an initial orbit 

of radius ir  to a final orbit of radius fr . 

Transfer Orbits 

One of the most energy efficient ways to transfer from one orbit to another is via an 

elliptical transfer orbit.  It is also one of the easiest ways to understand, conceptually.  In 

the diagram below, an inner, initial orbit is depicted in green.  A final orbit is depicted in 

blue.  A transfer orbit between the two is simply a cotangential ellipse, with the Sun at 

one focus, that connects the initial and final orbits.  One possible transfer orbit is shown 

in red in the diagram below. 

 

 
 

Equation (10) defines the energy required to change from one orbit to another.  A transfer 

orbit requires two such changes:  first a body must move from the initial orbit to the 

transfer orbit; and then it must move from the transfer orbit into the final orbit.  Just as in 

circular orbits, an elliptical transfer orbit has an associated energy, 
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Since the orbit is not circular, r is taken as the distance of the orbiting body from the 

focus occupied by the Sun.  For elliptical motion, the velocity in the orbit is given by, 
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Here v is the velocity of the body, G is Newton’s gravitational constant, m is the mass of 

the Sun, r is the distance to the occupied focus and a is the semimajor axis of the ellipse.  

Substituting equation (12) into equation (11) results in, 
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where TC  is the energy associated with the transfer orbit.  Interestingly, this shows that 

the energy of an elliptical orbit is purely a function of its semimajor axis.
1
  In the diagram 

below, observe that the major axis of the ellipse is the sum of the radii of the inner orbit 

(ri) and the outer orbit (rf). 

 

 
 

This means that the semimajor axis of the transfer ellipse can be written as, 
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Substituting equation (14) into equation (13) yields, 

                                                 
1
 For a circular orbit approximation, the semimajor axis may be replaced by the radius of 

the circular orbit and equations (7) and (8) may be recovered. 
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Now, observe that equation (7), the energy of the initial orbit, can be written in a similar 

form, 
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Combining equations (15) and (16) to find the difference in energy between the orbits 

results in,  
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This is then the change in energy required for entry into the elliptical transfer orbit from 

the initial orbit.  With a little algebra, equation (17) can be written, 
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Similarly, the energy change required to exit the transfer orbit and enter the final orbit is, 
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These changes in energy, AC  and BC  are due to changes in kinetic energy (in the case 

of a spacecraft, it will fire its rocket motor to achieve the change).  We can therefore 

write, 
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Equating (20) and (18) gives, 
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With some algebra, it can be shown that, 
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Here, 1v  is the change in velocity that a spacecraft must achieve in order to exit the 

initial orbit and enter the transfer orbit.  There is a similarly derived expression for the 

change in velocity required to enter the final orbit from the transfer orbit, 
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The Tsiolkovsky Rocket Equation 

The tools required to calculate the change in velocity required to move from one orbit to 

another have now been developed.  The next step is to understand how to calculate the 

mass of fuel required in order to achieve a given change in velocity.  The simplest way to 

do so is by using the Tsiolkovsky Rocket Equation, 
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Here,   is the total change in velocity that results from a mass of fuel being burned and 

expelled.  The variable e is the velocity of the rocket exhaust in the rocket’s reference 

frame, im is the initial total mass (rocket, payload and fuel combined), and fm is the final 

mass (rocket and payload only, with all of the fuel burned and expelled).   

 

The Tsiolkovsky Rocket Equation is derived from momentum conservation, the 

differential form of which is e fuelmdv v dm .  At the most abstract level, this says that 

there must be an increase in the momentum of the spacecraft equal to the momentum of 

the exhausted fuel.  From the rocket equation it is easy to see that there are several ways 

to achieve large values of  : 

 

 You can have a huge initial mass – an exponentially increasing mass of fuel as the 

required   rises; 

 You can have a very small final mass (read payload); 

 You can have a very large exhaust velocity. 

 

The maximum realistic exhaust velocity of chemical rockets is about 4,500 meters per 

second.  The highest exhaust velocity for a chemical propellant ever test-fired in a rocket 

engine was from a lithium, fluorine, and hydrogen rocket at 5,320 m/s.  The space shuttle 

main engines have a e of 4,500 m/s, which is typical.  



Analyzing a Cassini – Huygens Transfer Orbit 

It can now be shown why the Cassini – Huygens mission was not possible using an 

elliptical transfer orbit connecting the orbit of the Earth to the orbit of Saturn.  In such a 

transfer orbit, the spacecraft would need to change velocities to enter the transfer orbit, 

and then again to enter Saturn’s orbit.
2
  An estimate of the fuel requirements can be made 

using the required v and the Tsiolkovsky Rocket Equation. 

 

Newton’s gravitational constant, -11 2 26.67 10 kgG N m  , and the mass of the Sun, 
301.99 10m kg  .  The radius of Earth orbit is 150,000,000 km and the radius of 

Saturn’s orbit is 1,430,000,000 km.  Putting these numbers into equations (23) and (24) 

results in, 
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2 3 10v m s   . 

 

The sum of 1v  and 2v is the change in velocity required to fly a spacecraft from Earth 

orbit to Saturn orbit, and is shown to be 

 
315 10v m s   . 

 

The Tsiolkovsky Rocket Equation is used to determine fuel requirements.  The Cassini 

orbiter weighs 2,150 kg and the Huygens probe weighs 350 kg (AeroSpaceGuide).  First, 

solve the rocket equation for im , 
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Recall that v is the total velocity change requirement of the transfer orbit, and ev  is the 

rocket exhaust velocity.  The value im  is the total weight of the vehicle with fuel, and 

fm is the empty weight.  If we use the typical value of 4,500 for ev , and use the combined 

Cassini – Huygens weight of 2,500 kg as the empty weight (neglecting the mass of 

tankage), we find, 
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In order to fly an Earth to Saturn mission using an elliptical transfer orbit, the total weight 

of the Cassini – Huygens and fuel would need to be about 70,000 kg.  That is 

significantly heavier than an American M1 Abrams main battle tank.  This 70,000 kg 

                                                 
2
 More precisely, the spacecraft would have to enter an orbit of Saturn, not enter Saturn’s orbit.  This is a 

more complicated analysis but the result is ultimately the same. 



spacecraft must be launched into Earth orbit before it can even begin the transfer orbit, 

though.   

 

NASA has six types of launch vehicles available.  Their payload capacities are given in 

the following table (National Aeronautics and Space Administration). 

 

Name Payload 

Pegasus 454 kg 

Taurus 1350 kg 

Athena II 1896 kg 

Atlas V 8670 kg 

Delta 12757 kg 

Titan IVB/Centaur 21727 kg 

 

There is no launch vehicle in the NASA stable that is remotely close to being able to lift a 

spacecraft weighing 70,000 kg, and so the conventional transfer orbit solution must be 

excluded. 

The Gravity Assist Approach 

While it is not possible to lift a Cassini – Huygens mission that would use a conventional 

trajectory, there is an alternative.  Several robotic spacecraft have taken advantage of the 

gravity assist technique to reach distant destinations.  Using gravity assist, a spacecraft 

can interact with a planet to add or subtract momentum, and therefore increase or 

decrease the energy and speed of its orbit.  As shown in equation (10), a change in energy 

corresponds to a change in orbit radius.  The gravity assist method is straightforward and, 

in essence, the spacecraft “steals” momentum from a planet.  

An Extreme Example of Gravity Assist 

Imagine an extremely eccentric hyperbolic orbit.  In fact, picture an orbit so eccentric it 

looks like a course reversal.  This situation is illustrated below.  Consider a spacecraft, 

labeled 1m  in the illustration, traveling at a velocity 1v  which encounters a planet 

2m moving in the opposite direction at velocity 2v .   

 

 
 

In this interaction, conservation of momentum must apply, so that 
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Solving for the final velocity of the planet, 2 fv , one can see, 

 

1 1
2 1 1 2

2 2

f i f i

m m
v v v v

m m
   . 

 

Since the mass of the spacecraft 1m , is small compared to the planet 2m , 1
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Moving into the rest frame of the planet, the spacecraft appears to approach the planet at 

velocity 1 2v v .  In this frame, it will depart the planet at an equal velocity 1 2v v  in the 

opposite direction.  In the frame of reference of the Sun, however, the planet is moving at 

velocity 2v .  In order to convert from the planet rest fame back to the Sun frame, the 

velocity of the planet must be added to the velocity of the spacecraft.  This means that 

from the point of view of a “stationary” solar system, the spacecraft started the planetary 

encounter with a velocity of 1 2v v and finished with a velocity of  1 2 2 1 22v v v v v    .   

In the frame of reference of the solar system, the speed of the spacecraft has changed 

from 1 2v v  to 1 22v v . 

 

It is enlightening to examine this result using vectors.  The following illustration is of the 

same interaction, but shows the velocity vectors as seen in the planet rest frame and in the 

Sun frame.  From the point of view of the planet’s rest frame, as the spacecraft moves in 

from the left, it has a velocity vector vi. This is shown in the upper box in the illustration 

as the “before” vector.   During the encounter, vi is rotated by 180º as shown in the upper 

box “after” vector, vf.  In the rest frame of the planet, the magnitude of this vector is 

unchanged, only the direction changes.  The spacecraft exits the encounter in the opposite 

direction. 

 

In order to convert the encounter to the Sun frame, the velocity of the planet must be 

added.  In the lower box of the illustration, the velocity vectors of the spacecraft and the 

planet (vp) are added “head to tail” giving the resultant vector vR.  The resultant vector is 

interpreted as the velocity of the spacecraft in the Sun reference frame. 

 

Looking at the lower, resultant vectors, it is easy to see that the illustrated interaction can 

actually represent a slowly moving spacecraft (vR before) being overtaken by a fast 

moving planet and speeding up as a result of the interaction (vR after).   



 
 

During this kind of encounter, a spacecraft will receive a boost in speed known as a 

gravity assist.  The increase in speed may be understood by looking at the trajectory 

change of the spacecraft as a rotation of its velocity vector into an orientation closer to 

parallel with the planet’s velocity vector.  In the case of the illustration above, the 

spacecraft velocity vector started out antiparallel to the planet’s velocity vector and ended 

up being parallel.  This represents the greatest amount of speed increase possible in an 

interaction – a rotation through 180º.  In real missions the encounter is not a course 

reversal, however, the situation is more subtle. 

Realistic Form of Gravity Assist 

In a typical mission requiring a gravity assist maneuver, the goal is to send a spacecraft to 

an outer planet that, for some reason – usually cost, is not reachable via a conventional 

elliptical transfer orbit.  Ironically, gravity assist missions requiring large increases in 

velocity typically begin by slowing the spacecraft down to enter an elliptical transfer 

orbit to an inner planet.  Inner planets are chosen since they have greater orbital velocity 

and can therefore transfer more momentum during the encounter.  Recall that  
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so the smaller the orbital radius, the greater the orbital velocity.  The illustration below 

schematically shows a transfer orbit from Earth (outer, green orbit) to Venus (inner, blue 

orbit).   

 



 
 

If we were to zoom in on the Venus encounter depicted above, we would see something 

like the following illustration.  In the rest frame of Venus, it appears that the spacecraft is 

approaching on a hyperbolic trajectory that is essentially parallel to the left (arrival) 

asymptote and will exit along the right (departure) asymptote.  In the Venus rest frame, it 

appears as if the spacecraft velocity vector has been rotated by the angle  with its speed 

remaining unchanged. 

 

 
 

Just as in the extreme example above, to find velocities relative to the solar system, 

Venus’ velocity vector must be added to both the initial and final spacecraft velocity 



vectors.  This is shown in the top of the illustration.  As the spacecraft velocity vector is 

rotated through the angle , it becomes closer to parallel with the Venus velocity vector.  

The length of the resultant vector therefore must increase, and the speed of the spacecraft 

in the reference frame of the solar system must increase – a gravity assist has occurred. 

The Cassini – Huygens Gravity Assist Maneuvers 

In the Cassini – Huygens mission, the first gravitational assist was given by Venus, just 

as in the example above.  In this maneuver, the Cassini – Huygens probe gained roughly 

6 km/s relative to the sun. 

 

The mission planners used this gravity assist to send the spacecraft into an elliptical orbit 

that actually went outside the radius of Earth orbit, and returned for a second gravity 

assist maneuver at Venus.
3
  This elliptical orbit is shown in the illustration below. 

 

 
 

In the second gravity assist maneuver, the Cassini – Huygens probe gained another 

roughly 7 km/s.  This was followed by a third gravity assist during an Earth flyby in 

which the spacecraft gained yet another 6 km/s.  A fourth gravity assist occurred at a 

rendezvous with Jupiter which contributed a further 2 km/s.   

 

These four gravity assist maneuvers correspond to a total v of 21,000 m/s.  Note that 

this is more than the estimate of 15,000 m/s required for the Earth to Saturn mission since 

the gravity assists need to transfer the spacecraft from Venus to Saturn and not Earth to 

Saturn. 

 

The entire route taken by Cassini - Huygens is shown in the following illustration. 
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 The spacecraft did not, in reality return to exactly the same spot in Venus’ orbit.  It is shown this way here 

for clarity. 



 
 

The Venus, Venus, Earth, Jupiter Gravity Assist trajectory, known as VVEJGA to NASA 

mission planners, allowed Cassini - Huygens to generate enough velocity change to 

accomplish its mission.  Since gravity assist requires no expenditure of fuel, the Cassini – 

Huygens spacecraft only had to take enough fuel to perform the final Saturn orbit entry 

maneuver.  This was a significant maneuver in itself, and corresponded to a main rocket 

burn of 95 minutes that consumed most of the roughly 3,000 kg of propellant that the 

spacecraft carried. 

Conclusion 
Without using the gravity assist technique, the Cassini – Huygens spacecraft would have 

been required to carry almost 70,000 kg of fuel to get from Earth to Saturn.  This is 

almost four times the maximum payload of the largest rocket in the NASA inventory. 

 

By using gravity assist to achieve most of the velocity changes required for the mission, 

the designers were able to reduce the fuel requirements to 3,000 kg.  Even though Cassini 

– Huygens is still one of the largest, heaviest and most complex interplanetary spacecraft 

ever produced, use of gravity assist maneuvers put its initial mass well within the reach of 

the Titan IVB/Centaur rocket that was ultimately used. 
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