
1 

 

 
 
 

Nuclear Magnetic Resonance 
 

Craig M. Dowell
 

 

Department of Physics, University of Washington, Seattle, WA 98195-1560 

 

Abstract 

 

An overview of the significant historical events in the development of Nuclear Magnetic 

Resonance is presented.  The underlying physics of NMR are discussed, including the 

quantum mechanical and semi-classical views of spin and the statistical properties of bulk 

spin moments.  Methods of detection and pulse sequences are examined 
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1.  INTRODUCTION  

Nuclear Magnetic Resonance is a physical phenomenon.  Under certain conditions, a 

particle with spin can absorb energy from a surrounding magnetic field.  When this 

absorption happens, the particle in precession is said to be “in resonance” with the 

surrounding field.   

 

There have been a number of Nobel Prizes awarded for work in NMR.  Felix Bloch and 

Edgar Mills Purcell shared the Nobel Prize for physics in 1952 for their discovery of 

NMR.  In 1991, Richard Ernst earned a Nobel in Chemistry for the development of the 

methodology of high resolution nuclear magnetic resonance spectroscopy.  The 2002 

Nobel Prize for chemistry went to Kurt Wüthrich for development of NMR spectroscopy.  

Paul Lauterbur and Peter Mansfield shared a Nobel Prize in Medicine in 2003 for 

demonstrating that gradient fields and Fourier transforms could be used to create two-

dimensional pictures. 

2. THE UNDERLYING PHYSICS 

NMR is essentially a two-step process that works because we are able to observe the way 

large numbers of protons respond to magnetic fields.  In the first step, we manipulate the 

spin orientations of the protons; and in the second step, we measure changes in those 

orientations with a detector.  Although the magnetic field of each proton is tiny, and only 

a small fraction of the protons turn out to be detectable due to their alignment properties, 

there are many Avogadro numbers of them in the body, and we can measure the sum of 

all of those fields. 

2.1 SPIN 

In classical mechanics, an object can undergo two types of angular momentum:  The first 

type, orbital angular momentum, is associated with motion of the center of mass of the 

object around some point – like the Earth orbiting around the sun.  The second type, spin 

angular momentum, is associated with the rotation of an object – like the Earth spinning 

on its axis.  

 

In quantum mechanics, elementary particles carry an intrinsic angular momentum ( S ).  

This has nothing to do with motion in space, but is somewhat analogous to classical spin 

and so the same term is used.  Every kind of particle has a specific value of spin which 

never changes.  For example, electrons, neutrons and protons have spin ½, while photons 

have spin 1.  We will be interested in spin ½ in this instance, and particularly how 

particles with spin react to magnetic fields. 

 

The Schrödinger equation, models this quantum mechanical behavior: 

 

i H
t

. 
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It can be solved by separation of variables.  The solution constructs simultaneous 

eigenfunctions of three commuting operators, H, L
2
 and Lz.  The algebraic theory of spin 

is exactly the same as that of orbital angular momentum, so one can write, 

 
2 2,     ( 1) ,     SzH E S s s m . 

 

This is usually written in Dirac notation 

 
2 2  ,      ( 1)  ,     S   zH s m E s m S s m s s s m s m m s m , 

 

where s is the spin (½) and m is either (+½ or –½).  Thus the orientation takes on two 

values, which we interpret as parallel to an axis or antiparallel.  For spin ½ particles, there 

are then two eigenstates,  

 

1 1
 + ,

2 2
 which we call spin up, and 

1 1
 - ,

2 2
 which we call spin down. 

 

A spinning charged particle acts like a magnetic dipole.  The particle’s magnetic dipole 

moment ( ) is proportional to its spin angular momentum, 

 

S , 

 

and the proportionality constant ( ) is called the gyromagnetic ratio.  If one considers a 

proton in a uniform magnetic field 
0 0

ˆB B z along the z-axis, the matrix representation of 

the Hamiltonian would be 

 

0 0

1 0

0 12
zB S B . 

 

The Hamiltonian is time-independent, so the general solution to the time-dependent 

Schrödinger equation is, 

 

d
i

dt
. 

 

Solution can be expressed in terms of “stationary states,” 

 
E t E t

i i

t a e b e . 
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Since   s m E s m ,   

 

0 0

1 0 1 1

0 1 0 02 2
B B  implies that for the energy 0

2
E B , and  

 

0 0

1 0 0 0

0 1 1 12 2
B B  implies that for the energy 0

2
E B . 

 

Putting this together, 

 

0 0
2 2

B t B t

i i

t a e b e  , which can be written as 

0

0

2

2

i B t

i B t

ae
t

be

. 

 

With a little foreknowledge, one can write cos( ),     sin( ),
2 2

a b  and calculate the 

expectation values of xS , yS , and zS . 

 

0

0 0

0

2

2 2
0

2

cos( )
1 0 2

cos( ) sin( ) sin cos
0 12 2 2 2

sin( )
2

i B t

i B t i B t

z i B t

e

S e e B t

e

 

 

0

0 0

0

2

2 2
0

2

cos( )
0 2

cos( ) sin( ) sin sin
02 2 2 2

sin( )
2

i B t

i B t i B t

y i B t

e
i

S e e B t
i

e

 

 

0

0 0

0

2

2 2

2

cos( )
1 0 2

cos( ) sin( ) cos
0 12 2 2 2

sin( )
2

i B t

i B t i B t

z i B t

e

S e e

e

 

 

From the expression cos
2

zS  one can infer that S  is tilted away from the z-

axis at a constant angle .  From the expressions for 
zS  and 

zS  one can infer that 

the spin vector precesses around the z-axis at a frequency 0B .  This frequency is 

called the Larmor frequency and it is dependent on the gyromagnetic ratio of the particle 

and on the magnetic field. 
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The energies of the quantum state with zS  parallel to the magnetic field are 

 

0
2

E B , 0
2

E B . 

 

This is an example of the Zeeman effect.  Whenever an atom is placed in a uniform 

external magnetic field, the energy levels are shifted.  The difference between the 

energies in this case is 0B .  This is equal to since 0B .  In the same way that an 

atom can absorb or emit a photon and change energy state, a particular proton can be 

induced to change its magnetic field alignment if it receives an amount of energy 

equivalent to  where is the Larmor frequency.  This is the essence of nuclear 

magnetic resonance. 

2.2 MACROSCOPIC SPIN 

When making the transition from the quantum world to the macroscopic world, one 

begins to look at the average orientations of the spins of Avogadro numbers of protons. 

 

There is a trade-off between the tendency of a spin system to remain aligned with the 

magnetic field, and the ability of the system to gain energy.  Some fraction of the protons 

in a sample will gain energy from thermal contact with their surroundings and change to 

the higher energy state – that with the spin aligned antiparallel to the magnetic field as 

seen above.  The total number of protons that align is related to the Boltzmann factor, 

which is the probability that a given system will be found at a particular energy.  This 

factor is, 

 

( )
E

kTP E e . 

 

Using the factors derived above, it can be seen that the ratio of probabilities that a sample 

of protons will be in a particular state is, 

 
0

0

2

2

( )

( )

B

kT

B

kT

P E e

P E
e

. 

 

Using 42.58MHz T  (hydrogen), 0 1.5B T (a real value for the magnetic field in the 

Philips Achieva MRI machine), and T=295K (room temperature – 72º F) we find  

 

( )
1.00001

( )

P E

P E
 

 

There is an almost vanishingly small preference of protons to be in the aligned state.  The 

vast majority of protons cancel each others magnetic moments.  The ratio above may be 
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barely above unity, but Avogadro’s number is big.  There will still be on the order of 
1810 protons per gram of hydrogen sample that align with the static field.  This is called 

the spin excess and provides a macroscopic magnetization that can be detected.  

2.3 ROTATING MAGNETIC FIELDS 

Quantum mechanically, the MRI system needs to be able to add energy to the protons 

under measurement in units of .  This implies a rotating a magnetic field at a 

frequency 0B  

 

This rotating field is actually created using a single RF coil.  The simplest way to 

visualize how this happens is shown in Figure 1.  Recall that a current passing through an 

RF coil will create a magnetic field parallel or antiparallel to its axis depending on the 

current direction.  If this current is varied sinusoidally, the resulting magnetic field vector 

will oscillate from positive to negative and back again as shown in Figure 1 (top). 

 

 
 

Figure 1: The RF field can be viewed as a sinusoidally varying signal in a single direction 

(top) as well as the sum of counter-rotating vectors (bottom). 

 

Imagine that this magnetic field vector is actually the sum of two counter-rotating vectors 

as shown in Figure 6 (bottom).  The vector direction of the sum of the two vectors in the 

bottom row will be the same as that of the vectors in the top row.  Now if the rotational 

frequency of the vectors in the bottom row is chosen to rotate with a particle’s Larmor 

frequency, and the direction of rotation is also chosen to match the direction of 

precession, the chosen rotating vector will have the characteristics required of the rotating 

magnetic field.  

 

In a real MRI machine one defines a laboratory frame with the z-axis running down the 

bore of the superconducting magnet.  This is the direction of the static magnetic field
0B .  

The RF coil is typically placed around the subject along the x-axis.  Figure 2 shows how 

this lab frame would look. 
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Figure 2:  The laboratory coordinate system of an MRI machine. 

2.4 ROTATING REFERENCE FRAMES 

If one takes a semiclassical view of a subject immersed in the large static magnetic field 

of an MRI machine, one sees a macroscopic magnetic dipole moment u J  which is a 

result of the sum of all of the quantum mechanical magnetic dipole moments u S  of 

the subject.  This macroscopic magnetic dipole moment will precess around the z-axis of 

the laboratory frame at a frequency 0B .  The second rotating magnetic field 

designated 1B  will rotate around the z-axis in the x-y plane at the same frequency, as 

illustrated in Figure 3.  Consider what this situation would look like in a frame of 

reference where the x-y plane is also rotating at 0B .  Both 0B  and 1B  would be 

rotating at the same rate and would appear static in this reference frame. 

 

 
Figure 3:  The Magnetic Fields and the Dipole Moment. 

 

This rotating reference frame turns out to be very useful for understanding what is 

happening in MRI systems.  The equation of motion for the dipole moment in the 

laboratory frame is, 
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0 1

du
u B B t

dt
. 

 

If H1 is taken along the x-axis, and a transform is made into the rotating frame, the 

equation of motion becomes, 

 

'

0 1
ˆˆ

u
u B z B x

t
. 

 

An effective magnetic field can then be defined in this frame, 

 

'

0 1
ˆˆ

effB B z B x , 

 

The cosine of the angle between the z-axis and the effective field is then 

0

cos
eff

B

B
. 

 

The angle  in the macroscopic rotating frame view corresponds to the angle in the 

quantum mechanical treatment developed previously.  If 0B , the term in parentheses 

in Beff above drops out and the magnetic moment sees a torque of, 

 

1u B . 

 

A magnetic moment that is initially parallel to the static field (in the z-axis) will be 

caused to rotate in the z-y plane at a frequency of 1B  as illustrated in Figure 4.  

(N.B. the orientation of the axes in the figure, with the z-axis vertical). 

 

 
 

Figure 4:  The magnetic dipole moment rotated by the torque of the RF field. 
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In the jargon of NMR systems, if the rotating magnetic field is turned on for a time 

corresponding to a rotation of u around a quarter of the circle in Figure 4 and then turned 

off, it is called a 2  pulse.  This is because u  will rotate 2  radians in that time.   

Figure 5 shows the effect of a pulse of this type on the macroscopic magnetic dipole 

moment as viewed in the lab frame.  Think of the tip of the vector as initially precessing 

tightly around the z-axis under the influence of the strong static magnetic field B0.   

 
Figure 5:  Effect of a 2 pulse in the lab frame. 

 

When the rotating magnetic field is turned on, a torque is applied to u  which tends to 

rotate its precession into the x-z plane.  Since u  is precessing, it spirals down to the x-z 

plane.   

2.5 RELAXATION 

Once a proton spin is manipulated to cause it to precess around the z-axis in the x-y 

plane, as a result of a 2  pulse for example, it does not remain in that state.  The proton 

spins want to return to their equilibrium value.  This process returns a sample back to the 

initial state with a spin excess number of protons aligned with the static magnetic field as 

predicted by the ratio of Boltzmann factors. 

 

A  pulse (just continue a 2  pulse until the precession moves through the x-z plane, 

and past, until the magnetic dipole precesses around to the –z axis) will add enough 

energy to the protons in the body to change the quantum state of each one of the lower 

energy protons involved in the spin excess from E+ (the lower energy spin ½ state) to E- 

(the higher energy spin –½ state).   

 

This energy is returned during relaxation.  The relaxation is exponential and caused by 

several mechanisms.  The time constant describing the relaxation due to the combined 

effects of the several mechanisms is called the Combined Relaxation Time and is 

designated
*

2T . 

 

One of the mechanisms responsible for returning energy is related to the local 

environment of the protons.  The local environment is called the “lattice” (since most of 

the early experimenters in Nuclear Magnetic Resonance were solid-state physicists).  The 
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excess energy above the ground state that was acquired by each proton during the rotating 

field pulse is returned to its surroundings.  This mechanism is called spin-lattice 

relaxation and the corresponding time constant (T1) is called the spin-lattice relaxation 

time – the time it takes to reduce the longitudinal magnetization by a factor of e.  Some 

typical values for various human tissues are shown in Table 1. 

 

Another mechanism driving relaxation is the spin-spin relaxation.  This mechanism is 

driven by local inhomogeneities in the magnetic field.  Different values of the local 

magnetic field lead to different precession frequencies.  For example, electrons can shield 

nuclei from the ambient magnetic field.
1
  This difference in magnetic field leads to the 

individual spins gradually “dephasing” and resulting in a reduction in the total transverse 

magnetization vector to its equilibrium value of 0.   Table 1 also shows typical values for 

T2.   

 

Tissue T1 (ms) T2 (ms) 

Gray Matter 950 100 

White Matter 600 80 

Muscle 900 50 

Cerebrospinal Fluid 4500 2200 

Fat 250 60 

Arterial Blood 1200 200 

Venous Blood 1200 100 

 

Table 1:  Approximate values of relaxation parameters T1 and T2 at B0 = 1.5T, T = 37º C 

 

There is an additional dephasing of the spins due to external field inhomogeneities and is 

defined to be 

 
'

2 0T B . 

 

The combined relaxation time is defined as  

 

* '

2 1 2 2

1 1 1 1

T T T T
 

3.0 DETECTION 

 

In the previous sections it has been shown how an NMR system manipulates the 

magnetic dipole moments of protons under examination.  The result of this process is to 

cause the magnetic dipole moment to precess into certain orientations.  Once the driving 

force is removed, the dipole moments continue to precess and produce their own 

                                                 
1
 This is, in fact, the basis for NMR Spectroscopy.  The structure of nearby electrons affects the local 

environment of the protons allowing us to discern the 3-D structure of the surrounding elements. 
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changing magnetic fields.  It is the change in those fields over time which allows us to 

observe the Nuclear Magnetic Resonance phenomenon and its decay. 

 

Consider first a hypothetical macroscopic bar magnet spinning in the vicinity of a coil, as 

illustrated in Figure 6.  This is simply an electric generator.  Now imagine replacing the 

magnet with the precessing magnetization of the body caused by the actions of the 

external static field and the rotating field.   

 

 
 

Figure 6:  An electric generator. 

 

This situation is illustrated in Figure 7.  This illustration shows a red magnetic field 

vector, B(t), rotating in the x-y plane representing the precessing proton spins.  A (thick 

black) coil is shown placed in the x-z plane with its center at the origin to detect the 

changing field.   

 

 
 

Figure 7: A stylized NMR detector. 

 

The rotating magnetic field should look familiar; it is just like the field applied to 

manipulate the precession of the proton spins, but here it is due to the proton spins 

themselves. 
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The rotating magnetic field caused by the macroscopic moment could be described by, 

 

ˆ ˆcos sinB t B tx ty . 

 

Taking into account the angle φ (which corresponds to the angle of precession; through 

which the torque of the rotating RF field caused the spins to rotate; and also through 

which the change in energy due to relaxation will cause the spins to rotate the other way), 

it can be seen that, 

 

ˆ ˆsin cos sinB t B tx ty . 

 

The flux through the coil is found by the universal flux rule.  If one imagines the field is 

constant over the coil at any particular time ( d dt is constant – valid since the 

relaxation time is measured in hundreds of milliseconds, and the RF field is measured in 

megahertz) it can be shown that 

 
/ 2 / 2

2 2

/ 2 / 2
ˆ ˆ sin sin

L L

L L
dx dz y B t L y B t L B t . 

 

Differentiating to find the induced emf: 

 

2 2sin sin cos sin
d

L B t L B t
dt

E . 

 

Figure 8 shows how a response (the induced EMF in the coil) to a  pulse might be seen. 

 
Figure 8:  The response of a system after application of a pi pulse. 

 

The signal grows from zero to a maximum when the magnetic field is rotating in the x-y 

plane.  At this point, 2  and a 2  pulse has been applied.  The signal then 

decreases until the spins are precessing in the –y axis at which point a  pulse has been 

applied.  
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If the driving rotating magnetic field were removed at the 2  point, the relaxation 

process would begin and an exponential decay of the signal would be seen, with the time 

constant determined by *

2T .  Figure 9 shows what the response to a 2  pulse, followed 

by a relaxation might look like.  The decay portion of the signal envelope is known as the 

Free Induction Decay (FID).  

 

 
Figure 9:  Free induction decay following a pi/2 pulse. 

 

The signal shown in Figure 9 is typically demodulated (in the sense of rectifying and 

filtering) and displayed as an exponentially decaying curve from the point at which the 

driving field is removed.  Figure 10 shows what a typical demodulated FID signal could 

look like.  This is also how the FID signal would appear in the rotating reference frame, 

by the way. 

 

 
 

Figure 10:  Demodulated free induction decay following a pi/2 pulse 

 

3.1 PULSE SEQUENCES 

 

An NMR experiment will consist of many measurements of the FID.  The arrangement of 

stimuli (gradients, RF pulses – the rotating magnetic field) and measurements are 
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arranged in a Sequence Diagram.  An example of the most basic sequence is shown in 

Figure 11. 

 

 
 

Figure 11:  A basic NMR pulse sequence diagram 

 

Here a 2  pulse is applied, and the FID is measured by enabling an Analog to Digital 

Converter (ADC) which converts the FID signal into a numerical representation.  It is 

assumed that the pulse sequence repeats a large number of times. 

 

The subject of pulse sequence creation is itself very rich.  Sequences of excitations and 

measurements can be combined to characterize various additional phenomena in the test 

subject.  Although many pulse sequences have been developed, they will always be 

composed from variations on the theme of first manipulating the spins of a sample and 

then observing the relaxation. 

 

4.0 SUMMARY 

 

The field of Nuclear Magnetic Resonance is incredibly rich.  From its humble beginnings 

in 1946, various applications of NMR have been taken to incredible lengths.  Today, we 

can use NMR spectroscopy to understand the three-dimensional structure of chemicals.  

NMR microscopy, which is a high spatial resolution version of Magnetic Resonance 

Imaging, is allowing studies of chemical processes in single cells down to the scale of a 

micrometer.  Nuclear Magnetic Resonance has applications in fields as diverse as 

biology, materials science, chemical physics, petrochemicals, food processing, polymers 

and, of course, medicine. 

 

The physics of Nuclear Magnetic Resonance is deceptively simple, but the solutions to 

the related scientific and engineering problems are fiendishly clever. 
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